Left-Hand Nullspace

If $\operatorname{rank}\left(\mathbf{A}_{m \times n}\right)=r$, and if $\mathbf{P A}=\mathbf{U}$, where \mathbf{P} is nonsingular and \mathbf{U} is in row echelon form, then the last $m-r$ rows in \mathbf{P} span the left-hand nullspace of \mathbf{A}. In other words, if $\mathbf{P}=\binom{\mathbf{P}_{1}}{\mathbf{P}_{2}}$, where \mathbf{P}_{2} is $(m-r) \times m$, then

$$
\begin{equation*}
N\left(\mathbf{A}^{T}\right)=R\left(\mathbf{P}_{2}^{T}\right) \tag{4.2.12}
\end{equation*}
$$

Proof. If $\mathbf{U}=\binom{\mathbf{C}}{\mathbf{0}}$, where $\mathbf{C}_{r \times n}$, then $\mathbf{P A}=\mathbf{U}$ implies $\mathbf{P}_{2} \mathbf{A}=\mathbf{0}$, and this says $R\left(\mathbf{P}_{2}^{T}\right) \subseteq N\left(\mathbf{A}^{T}\right)$. To show equality, demonstrate containment in the opposite direction by arguing that every vector in $N\left(\mathbf{A}^{T}\right)$ must also be in $R\left(\mathbf{P}_{2}^{T}\right)$. Suppose $\mathbf{y} \in N\left(\mathbf{A}^{T}\right)$, and let $\mathbf{P}^{-1}=\left(\begin{array}{ll}\mathbf{Q}_{1} & \mathbf{Q}_{2}\end{array}\right)$ to conclude that

$$
\mathbf{0}=\mathbf{y}^{T} \mathbf{A}=\mathbf{y}^{T} \mathbf{P}^{-1} \mathbf{U}=\mathbf{y}^{T} \mathbf{Q}_{1} \mathbf{C} \Longrightarrow \mathbf{0}=\mathbf{y}^{T} \mathbf{Q}_{1}
$$

because $N\left(\mathbf{C}^{T}\right)=\{\mathbf{0}\}$ by (4.2.11). Now observe that $\mathbf{P P}^{-1}=\mathbf{I}=\mathbf{P}^{-1} \mathbf{P}$ insures $\mathbf{P}_{1} \mathbf{Q}_{1}=\mathbf{I}_{r}$ and $\mathbf{Q}_{1} \mathbf{P}_{1}=\mathbf{I}_{m}-\mathbf{Q}_{2} \mathbf{P}_{2}$, so

$$
\begin{aligned}
\mathbf{0}=\mathbf{y}^{T} \mathbf{Q}_{1} & \Longrightarrow \mathbf{0}=\mathbf{y}^{T} \mathbf{Q}_{1} \mathbf{P}_{1}=\mathbf{y}^{T}\left(\mathbf{I}-\mathbf{Q}_{2} \mathbf{P}_{2}\right) \\
& \Longrightarrow \mathbf{y}^{T}=\mathbf{y}^{T} \mathbf{Q}_{2} \mathbf{P}_{2}=\left(\mathbf{y}^{T} \mathbf{Q}_{2}\right) \mathbf{P}_{2} \\
& \Longrightarrow \mathbf{y} \in R\left(\mathbf{P}_{2}^{T}\right) \Longrightarrow N\left(\mathbf{A}^{T}\right) \subseteq R\left(\mathbf{P}_{2}^{T}\right) .
\end{aligned}
$$

Example 4.2.5

Problem: Determine a spanning set for $N\left(\mathbf{A}^{T}\right)$, where $\mathbf{A}=\left(\begin{array}{cccc}1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4\end{array}\right)$.
Solution: To find a nonsingular matrix \mathbf{P} such that $\mathbf{P A}=\mathbf{U}$ is in row echelon form, proceed as described in Exercise 3.9.1 and row reduce the augmented matrix $(\mathbf{A} \mid \mathbf{I})$ to $(\mathbf{U} \mid \mathbf{P})$. It must be the case that $\mathbf{P A}=\mathbf{U}$ because \mathbf{P} is the product of the elementary matrices corresponding to the elementary row operations used. Since any row echelon form will suffice, we may use GaussJordan reduction to reduce \mathbf{A} to $\mathbf{E}_{\mathbf{A}}$ as shown below:

$$
\begin{gathered}
\left(\begin{array}{llll|lll}
1 & 2 & 2 & 3 & 1 & 0 & 0 \\
2 & 4 & 1 & 3 & 0 & 1 & 0 \\
3 & 6 & 1 & 4 & 0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{llll|rrr}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 / 3 & 2 / 3 & 0 \\
2 / 3 & -1 / 3 & 0 \\
1 / 3 & -5 / 3 & 1
\end{array}\right) \\
\mathbf{P}=\left(\begin{array}{rrr}
-1 / 3 & 2 / 3 & 0 \\
2 / 3 & -1 / 3 & 0 \\
1 / 3 & -5 / 3 & 1
\end{array}\right), \text { so (4.2.12) implies } N\left(\mathbf{A}^{T}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
1 / 3 \\
-5 / 3 \\
1
\end{array}\right)\right\} .
\end{gathered}
$$

